Exploring the Moon by Charles A. Wood

Human History on the Moon

When tourists eventually visit the Moon, their guidebooks will surely recommend destinations with historical significance. Here are a few that I would expect to find included in a 2050 edition of *Lonely Planet: Moon.*

When it came time to select a place for the first human landing on the Moon, safety was NASA's main consideration. This is why the Apollo 11 site is unremarkable to the point of even being difficult to pinpoint. But as astronauts Neil Armstrong and Buzz Aldrin found out, even apparently bland parts of the lunar surface can still have large boulders and steep-walled craters—Armstrong had to use the last of his remaining fuel to fly the Lunar Module *Eagle* past dangerous terrain to a safe landing spot.

In the future, tourists may buy postcards and take snapshots of important lunar landmarks.

You may have nearly as much trouble finding Tranquility Base as Neil and Buzz did. Begin at the southern edge of Mare Tranquillitatis, east of the twin craters Sabine and Ritter. There you will find the 6-kilometer-wide crater Moltke, the landing site's nearest prominent marker. East

The Lunar 100

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 Hipparchus</td>
<td>Subject of first drawing of a single crater</td>
</tr>
<tr>
<td>82 Linné</td>
<td>Small crater once thought to have disappeared</td>
</tr>
<tr>
<td>90 Armstrong, Aldrin, Collins</td>
<td>Small craters near the Apollo 11 landing site</td>
</tr>
</tbody>
</table>

For a complete Lunar 100 list point your Web browser to skyandtelescope.com/lunartop100.

When to View It

Hipparchus
- May 5th and 20th; June 4th and 18th.

Linné
- May 4th to 19th; June 3rd to 16th.

Armstrong, Aldrin, Collins
- May 4th and 18th; June 2nd and 16th.

Universal dates indicate when these craters are favorably illuminated.

of Sabine and north of Moltke is a row of three small pits named Aldrin, Collins, and Armstrong (L90 in the Lunar 100). Near the middle of the triangle formed by Aldrin, Armstrong, and Moltke is the Apollo 11 landing site. This is where humans first set foot on another world.

Another place of historical interest is Hipparchus (L28). This old and battered crater was the subject of the first drawing of an individual lunar feature. The underrated 17th-century English polymath Robert Hooke published his rendering of Hipparchus in his eponymous book, *Micrographia.* Including a lunar crater in a book of drawings made through a primitive microscope demonstrates the wide range of...
Hooke's interest in the natural world. And his sketch is remarkably good.

Hooke tried to determine the origin of craters like Hipparchus experimentally by dropping spheres into moist clay and by boiling powdered plaster of Paris. Since the discovery of asteroids lay another 133 years in the future, he knew of no cosmic source for the kinds of projectiles needed to produce impact craters. Ultimately, he decided that the heat-driven process that produced collapsed blisters in the plaster of Paris was the best model for the formation of lunar craters.

The historically minded lunar tourist might also want to visit Linné (L82), one of the 19th century's most famous and mysterious lunar craters. Linné is an unremarkable small, fresh crater on the western edge of Mare Serenitatis. But the most skilled observer of that era, J. F. Julius Schmidt, announced in 1866 that Linné had disappeared, and that in its place was a white cloud. For more than 100 years, observers wanting to believe that the Moon was still active clung to this assertion as definite proof that real changes still occurred on the lunar surface. Finally, in 1971, orbital photographs taken during the Apollo 15 mission revealed Linné to be a very ordinary crater. But, if you train your telescope on it a few days after the terminator has swept by, you can still see Schmidt's cloud — a nimbus of bright, pulverized ejecta surrounding a tiny, unchanging crater.